

ATL Transformation Examples

The Microsoft DSL to EMF
ATL transformation

- version 0.1 -

October 2005

by

ATLAS group

LINA & INRIA

Nantes

Content

1 Introduction ... 2

2 The metamodel bridge... 2

2.1 Explanation.. 2

2.2 M3-level mapping .. 3
2.2.1 KM3: Kernel MetaMetaModel.. 3
2.2.2 Microsoft DSL metametamodel .. 4
2.2.3 Comparison between KM3 and DSL .. 6

2.3 First ATL Transformation chain: DSL to Ecore .. 7
2.3.1 XML to DSL ... 7
2.3.2 DSL to KM3.. 8
2.3.3 Third step: KM3 to Ecore.. 10

2.4 Second ATL Transformation chain: Ecore to DSL .. 10
2.4.1 First step: KM32DSL.. 10
2.4.2 Second step: DSL to XML.. 12
2.4.3 Third step: XML2Text .. 15

2.5 Example: PetriNet.. 15

3 The model bridge... 17

3.1 Introduction.. 17

3.2 Microsoft DSL models.. 19
3.2.1 Models in Microsoft DSL Tools ... 19
3.2.2 Models DSL metamodel.. 20

3.3 Models in Eclipse EMF.. 21

3.4 KM2 metamodel ... 22

3.5 ATL Transformations ... 23
3.5.1 XML to DSLModel... 23
3.5.2 DSLModel to KM2 ... 26
3.5.3 KM2 to DSLModel ... 28
3.5.4 KM2 to Metamodel ... 31

3.6 Example: Small Petri Net... 32

4 Extension .. 34

5 References .. 36

Appendix A The XML metamodel in KM3 format .. 37

Appendix B The KM3 metamodel in KM3 format... 38

Appendix C The DSL metamodel in KM3 format .. 39

Appendix D The KM2 metamodel in KM3 format... 41

Appendix E The DSLModel metamodel in KM3 format ... 43

Appendix F The ATL metamodel in KM3 format.. 45

Figures List

Figure 1. Overview of the M2-level bridge.. 3

Figure 2. Use of KM3 as a pivot .. 4

Figure 3. The KM3 metamodel .. 4

Figure 4. A Domain model example .. 5

Figure 5. The DSL metametamodel ... 6

Figure 6. Simplified versions of DSL (left) and KM3 (right) metametamodels........................ 7

Figure 7. Configuration for XML2DSL... 8

Figure 8. An example of Complex Relationship treatment.. 9

Figure 9. Configuration for DSL2KM3 ... 10

Figure 10. Configuration for KM32DSL ... 12

Figure 11. Simple metamodel of .dsldm file .. 12

Figure 12. Roots constraint example.. 13

Figure 13. Definitionlevel constraint example... 14

Figure 14. Configuration for DSL2XML... 14

Figure 15 Configuration for XML2Text .. 15

Figure 16. PetriNet view with DSL Tools.. 16

Figure 17. PetriNet view with EclipseUML plugin ... 16

Figure 18. DSL Tools view of the final result.. 17

Figure 19. Model bridge overview... 18

Figure 20. To the left a domain model and to the right a model from this domain model 19

Figure 21. XML Schema for MS DSL models representation... 20

Figure 22. The models DSL metamodel .. 21

Figure 23. In left a metamodel defined under EMF and in right a model example 21

Figure 24. KM2 metamodel ... 22

Figure 25. A KM2 instantiation example... 23

Figure 26. Configuration of the XML2DSLModel transformation ... 25

Figure 27. Screenshot of the DSLModel2KM2 configuration... 27

Figure 28. Configuration for KM22DSLModel... 30

Figure 29. Overview of KM22Metamodel... 31

Figure 30. Process to generate a transformation .. 31

Figure 31. KM32ATL_KM22MM configuration .. 32

Figure 32. Small Petri net domain model... 33

Figure 33. A simple Petri net model SmallPetriNet1.xml .. 33

Figure 34. Configuration for KM22SmallPetriNet .. 34

Figure 35. Simple domain model example... 35

Figure 36. The same domain model view with UML representation....................................... 35

Figure 37. The result after DSL2KM3 transformation .. 35

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 2

1 Introduction

This document provides you a complete overview of a transformation chain example between two
technical spaces: Microsoft DSL (Domain Specific Languages) Tools [1] and EMF (Eclipse Modeling
Framework) [2]. The aim of this example is to demonstrate the possibility to exchange models defined
under different technologies. In particular, the described bridges demonstrate that it should be
possible to define metamodels and models using both Microsoft DSL Tools and Eclipse EMF
technologies. Note that the bridges described in this document have to be considered as preliminaries
prototypes. As such, they focus on a subset of all possible transformation scenarios. Moreover, it may
appear that some of the defined transformations still contain some errors.

The bridge between MS/DSL and EMF spans two levels: the metamodel and model levels. At the level
of metamodels, it allows to transform MS/DSL domain models to EMF metamodels. At the level of
models, the bridge allows transforming MS/DSL models conforming to domain models to EMF models
conforming to EMF metamodels. At both levels, the bridge operates in both directions. A chain of ATL-
based transformations is used to implement the bridge at these two levels. The benefit of using such a
bridge is the ability to transpose MS/DSL work in EMF platform, and inversely.

The next sections explain the different steps to realize the bridge. Section 2 explains the operation of
the bridge at the metamodel level; Section 3 shows the operation at the model level. Finally, Section 4
explains why and how an extension could be implemented.

2 The metamodel bridge

2.1 Explanation

We can use ATL [3] to transform domain models into KM3 models [5] and EMF metamodels [2] with
an additional transformation from KM3 to Ecore [6]. An overview of the M2-level bridge is given in
Figure 1.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 3

XML DSL KM3

MMa MMa MMa

MMa
Domain
model
MMa

DSL
Model

DSL Ecore

Microsoft
DSL Tools

Eclipse EMF

XML2DSL

DSL2XML

DSL2KM3

KM32DSL
Ecore2KM3
Demotion

Promotion
KM32Ecore

C2

C2 C2

C2

C2 C2

C2

C2 C2

M3

M2

M1

Figure 1. Overview of the M2-level bridge

A metamodel MMa (defined in DSL Tools, as in Figure 4) is injected into an XML model using an XML
injector (included with ATL). After that, the model is transformed into a model conform to the DSL
metamodel considered in this transformation example, and then into a KM3 model. The final step is
the promotion of this model using the KM32Ecore transformation, which creates the MMa metamodel
conforming to Ecore (the inverse transformation is a demotion). The inverse transformation chain from
Ecore to DSL is also defined.

In fact, this transformation chain mainly consists in building transformations from DSL to KM3 and
KM3 to DSL. Indeed, since KM3 acts as a pivot between the metametamodels, transformations to and
from Ecore are already available.

2.2 M3-level mapping

To enable mapping between MS/DSL and EMF, a definition of each system at M3 (i.e.
metametamodel) level is required. KM3 is used as a metametamodel. Since Microsoft does not
specify any explicit metametamodel for DSL designers, a metametamodel has been designed by
observation.

2.2.1 KM3: Kernel MetaMetaModel

KM3 is a metametamodel close to Ecore and EMOF 2.0 [7]. A class diagram version is presented in
Figure 3. It is used rather than Ecore because because this example also deals with several other
metametamodels such as MOF 1.4 [8]. KM3 is used as a pivot between these metametamodels as
illustrated on Figure 2. Additionally, it provides a textual concrete syntax to specify metamodels, which
has some similarities with the Java notation.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 4

Figure 2. Use of KM3 as a pivot

Figure 3. The KM3 metamodel

2.2.2 Microsoft DSL metametamodel

The Microsoft Tools for Domain-Specific Languages is a suite of tools for creating, editing, visualizing,
and using domain-specific data for automating the enterprise software development process. These
new tools are part of a vision for realizing software factories. The version considered here is May 2005
CTP release for Visual Studio 2005 Beta 2.

The equivalent of a metamodel in the Microsoft world is called a “domain model”. It is composed of a
class hierarchy and relationships. A DSL metametamodel has been extracted from experience with
Microsoft’s tools. Figure 4 provides a domain model example.

Classes and relationships are viewed at the same level. A relationship may be a simple reference or
an embedding. It has properties and may have a super type like a class. A relationship has two roles,
but a future version of DSL Tools may propose relationships with n roles. A role can be viewed as an
association end in UML. It has a name as well as multiplicity max and min properties.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 5

Domain models contain two different types: enumeration and simple type. The latter can be Boolean,
String, Integer, Double, Date, etc.

The DSL metametamodel is presented in Figure 5.

Figure 4. A Domain model example

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 6

Figure 5. The DSL metametamodel

2.2.3 Comparison between KM3 and DSL

With those metamodels, we can compare KM3 and DSL with each other (simplified versions of them
are showed in Figure 6), it appears that:

• KM3 and DSL Classes are almost equivalent, and have the same characteristics, except
supertypes: KM3 allows multiple inheritances whereas DSL does not.

• A KM3 Attribute is equivalent to a DSL ValueProperty.

• DSL roles can be mapped to KM3 References, but those are not affiliated with a Relationship
like in DSL. There are simply contained in their owner and linked to their opposite. When the
owning relationship of a pair of roles is an embedding, one of the associated KM3 references
is a container.

• DSL Relationships and DSL Classes have the same properties: relationships may be linked to
each other, have a supertype, attributes, etc. There is no direct equivalent in KM3. We can
simply consider that simple relationships (with no supertype or attribute) correspond to a pair
of references whereas complex relationships correspond to classes.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 7

-isEmbedding : Boolean

RelationshipClass

ValueProperty

1

-valueproperties*

-relation

1

-roles 2

-source

-type

DomainModel

-supertype 1

1

*

-isAbstract : Boolean

Classifier

Type

1
*

+min : Integer

+max : Integer

+isOrdered : Boolean

+isPropertyGenerator : Boolean

Role

-name : String

ModelElementModelElementModelElementModelElement

-lower : Integer
-upper : Integer

-isOrdered : Boolean

StructuralFeaturesStructuralFeaturesStructuralFeaturesStructuralFeatures

ClassifierClassifierClassifierClassifier

MetamodelMetamodelMetamodelMetamodel

AttributeAttributeAttributeAttribute

-isContainer : Boolean

ReferenceReferenceReferenceReference

*-supertypes *

-type

1

-opposite0..1
-isAbstract : Boolean

ClassClassClassClass -owner

1

-structuralFeatures

*

PackagePackagePackagePackage

-contents

1*

1
-contents*

Figure 6. Simplified versions of DSL (left) and KM3 (right) metametamodels

2.3 First ATL Transformation chain: DSL to Ecore

The aim of this transformation chain is to convert a DSL metamodel, contained by a .dsldm file, into an
Ecore metamodel, which could be used with EMF. The transformation is defined in three steps which
are detailed in the following sections.

2.3.1 XML to DSL

2.3.1.1 Principle

This first transformation has to extract information from a .dsldm file into a DSL metamodel. The
.dsldm file is injected into an XMI file that conforms to an XML metamodel, using an XML injector. Next
step is based on an ATL transformation that captures information from the XML file to create a model
which is conform to the DSL metamodel previously described.

The main work of this transformation is to achieve a mapping between .dsldm features (concepts,
relationships, roles, enumerations, properties…) and the considered DSL model.

Four types are recognized with the developed bridge: String, Boolean, Integer and Double. The
corresponding DSLs SimpleTypes are created by default in the “main” rule, DomainModel. Then when
an attribute is encountered in the model, its type is linked to one of those previously created, using the
helper findType(). This helper, using a resolveTemp() function, retrieve the type previously created.

In the .xml file, a reference to an object is symbolized by an XML Text field containing the id of the
referenced feature. To put this information in the output model, a correspondence is established a
between objects and their id. A specific helper creates a table with two rows (in ATL, a map)
containing all the ids and the XML Element they correspond to. Then, when encountering any id in the
file, it is possible to retrieve the class, relationship, role… it corresponds to by using the helper
dslElementsById(), and link it in the output model.

2.3.1.2 Limitations

The only limitation is the type of the properties: as previously stated, String, Double, Integer and
Boolean are the only recognized types.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 8

2.3.1.3 Use

The first step is to create a DSL tools project (or take an existing one) that is going to be turned into an
EMF project. The file that contains the Metamodel, which is usually located at this file path:

…\Visual Studio 2005\Projects\ProjectName\DomainModel\ProjectName.dsldm

This file can be imported into an ATL project by renaming it into ProjectName.xml. The XML injector
(right-click � “import XML model”) then enables to get an XML model from the .xml file. This produces
a file named ProjectName.xmi, which can be used as input of the first transformation. We must apply
Executed on this file, the XML2DSL transformation provides it into an .xmi file containing the
Metamodel conforming to the DSL Metamodel.

Figure 7 illustrates the transformation configuration: there is one input (XML) and one output (DSL)
metamodel. In Path Editor, the path of the DSL and XML metamodels are respectively associated with
DSL and XML. The IN field contains the path of the .xmi model example previously generated, and the
OUT one the path for the results.

Figure 7. Configuration for XML2DSL

2.3.2 DSL to KM3

2.3.2.1 Principle

In this step, the previously generated DSL model is transformed into a KM3 metamodel using another
ATL transformation. DSL classes are simply mapped to KM3 classes, like simple types and properties.
Some problems have however to be considered: there exist some important differences between the

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 9

DSL and KM3 metamodels. The most important is that, in DSL, a Relationship is defined like a Class
with the same properties, whereas in KM3, a Relationship between two Classes is symbolized by two
references into adjoining classes. There are two solutions:

• The specific properties of the Relationship, except roles and type of containment, may be
ignored; this however leads to an important information loss;

• The Relationship can be turned into a KM3 class, and keep the attributes, supertype, and
other features.

Relationships can be classified into two types:

 source type

Figure 8. An example of Complex Relationship treatment

2.3.2.2 Limitations

There are no limitations in this transformation, but important information is lost: it is impossible to know
if a class was previously a Relationship that has been turned into a class by the transformation. This
problem is discussed in Section 4.

2.3.2.3 Use

Figure 9 provides a screenshot of the transformation configuration: there is one input (DSL) and one
output (KM3) metamodel. In Path Editor, the DSL and KM3 metamodels are respectively associated
with DSL and KM3. In IN field contains the path of the .xmi file previously generated by the XML2DSL
transformation, and the OUT one the path for the results.

• Simple Relationship: If there is no supertype, attributes…
it is possible to ignore the name and transform the
relationship into a couple of KM3 references, using the first
solution: the roles of a relation are mapped to KM3
references.

 • Complex Relationship: If the relationship has attributes,
supertypes, or subtypes, it is turned into a KM3 class (using
the second solution), and two couples of references are
created enabling to link it to the classes referenced by its
roles, like in Figure 8.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 10

Figure 9. Configuration for DSL2KM3

2.3.3 Third step: KM3 to Ecore

The model produced at the previous step can now be used with, for instance, Omondo’s EclipseUML
plugin [9], by simply injecting the KM3 file into an Ecore model using the existing KM3 injector.

2.4 Second ATL Transformation chain: Ecore to DSL

This transformation starts with a model that conforms to the KM3 metamodel, and aims to transpose it
into a DSL tools model. This transformation chain is composed of three steps that are detailed in the
following sections.

2.4.1 First step: KM32DSL

2.4.1.1 Principle

While transforming the initial model (which is expressed in KM3) into a model which conforms to the
DSL metamodel, several problems have to be considered:

• KM3 does not implement Relationships. They therefore need to be created from couples of
KM3 References. To this end, the helper list stores the references which need to be turned
into relationships. Each time this helper encounters a reference that has no opposite or that
has an opposite reference which has never been stored, it stores it into a sequence.

-- This helper get a list of references which need to be turned
-- into relationship

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 11

-- CONTEXT: thisModule
-- RETURN: Sequence(KM3!Reference)
helper def: list: Sequence (KM3!Reference) =
self.getRefs()->iterate(e; seq : Sequence (KM3!Reference) = Sequence {} |
 if e.opposite.oclIsUndefined() then
 seq.append(e)
 else if (seq->includes(e.opposite) or seq->includes(e)) then
 seq
 else if e.isEmbedding() then
-- EMBEDDING
 if e.isContainer -- e is the first role
 then seq.append(e)
 else seq.append(e.opposite) -- e.opposite is the first role
 endif
 else
-- REFERENCE
 seq.append(e)
 endif
 endif

 endif);

• When creating the relationship, the reference and its opposite are mapped to the two roles of
the relationship. If the source reference did not have an opposite, it is generated.

• Some attributes of DSL do not have correspondence in KM3. They are therefore created
using default values, and single identities are generated.

2.4.1.2 Use

The aim is now to turn an EMF Metamodel into a DSL project. For this purpose, a Metamodel
conforming to Ecore has to be created. It is then turned into a KM3 Metamodel by using the
Ecore2KM3 extractor (right-click � “extract Ecore Metamodel to KM3”). At this stage, the KM3 injector
(right-click � ”inject KM3 file to KM3 Model”) enables to get a KM3 model from the .km3 file. This
model (an .xmi file) is then used as input of the KM32DSL transformation in order to generate the
corresponding Metamodel in DSL.

Figure 10 provides a screenshot of the transformation configuration: there is one input (KM3) and one
output (DSL) metamodel. In Path Editor, the path of the DSL and KM3 metamodels are respectively
associated with DSL and KM3. The IN field contains the path of the .xmi previously generated, and the
OUT one, the path for the results.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 12

Figure 10. Configuration for KM32DSL

2.4.2 Second step: DSL to XML

2.4.2.1 Principle

This step transforms the previously obtained result into a model conforming to XML, which defines a
.dsldm like file. In Figure 11, which is a simple metamodel of .dsldm file, the white entities correspond
to what is supported by the considered DSL metametamodel, whereas grey entities correspond to
what has been added from scratch for the purpose of this transformation.

Model

-name:String
-identity:String
-id:String
-namespace:String
-isLoaded:Boolean

DMD

-xmlns:xsi:String
-xmlns:xsd:String
-xmlns:String

Modelmdfmetadata Enumeration Concept

-majorversion:integer
-minorversion:integer
-localize:Boolean

Relationship TreeNavigator

models

1..*

extended *

* trees* relationships* concepts* enumerationsmdfmetadata

Figure 11. Simple metamodel of .dsldm file

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 13

Here are the the main parts of this model:

• MdfMetaData: information about the diagram (description, category);

• Extended: a reference to the model which is extended by this diagram;

• Enumerations: this part contains the enumerations and their literals;

• Relationships: this part contains the relationships and their roles and valueproperties;

• Trees: this part describes the way for DSL Tools to display the diagram as trees, with four
treeNavigators.

o treeNavigator Intrinsic: contains information about roles and inheritances.

o treeNavigator CompleteDiagram: contains information about roles, inheritances, their
definitionlevel and root classes of the diagram. These notions are explained below.

o treeNavigator Serialization: contains a reference to the XML root element which would
be used to serialize the diagram in future.

o treeNavigator Delete: contains information about roles and inheritances., This tree is
not built by the transformation (it does not seem to be mandatory).

• Concepts: this part contains the concepts and their valueproperties.

The transformation consists in mapping enumerations, concepts and relationship to their XML
equivalent. For instance, a Concept would be notified as follows:

<concept name="ER" identity="4e10f0be… " namespace=" EntiteRelation.DomainModel"

id="i4e10f0be…" isLoaded="true" isAbstract="false">

 <mdfmetadata xsi:type="conceptorshapemdfmetadata" accessmodifier="public" category=""

description="" doccomment="" localize="false" />

 </concept>

During this mapping, when encountering an inheritance (i.e. a concept or a relationship which has a
supertype) or a role (each relationship owns two opposites roles), a ‘roleExpression’ or
‘inheritanceExpression’ has to be built in the treeNavigators.

The CompleteDiagram construction is the most important part of this transformation because two
constraints have to be respected (otherwise DSL Tools can not display the diagram):

• Roots Classes must be signalized in the CompleteDiagram. In fact, those classes are the
roots of the trees which appear in the model designer. In Figure 12, class1 and class3 are
roots, and the designer must build two trees at least. To define if a class is root, the
transformation checks whether it has no supertype and it is no pointed by any Relationship.

Figure 12. Roots constraint example

• When the designer needs to make a class appear several times, like in Figure 13, it must be
notifoed in the treeExpression (in the CompleteDiagram treeNavigator) which corresponds to
the reference or inheritance which makes necessary to display another class in the diagram.
This is notified by changing the definitionlevel attribute to “use” instead of “definition”. In the

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 14

transformation, when encountering a reference or inheritance which refers to a class, its
definitionlevel is stored as “definition” and the class is put into a list. When this class is
referred again, its definitionlevel must be store as “use” in the treeNavigator.

Figure 13. Definitionlevel constraint example

2.4.2.2 Limitations

The search for root classes may fail when the input model is too complex. In this case, the DSL tools
can not display the model correctly and superpose some classes and relationships.

2.4.2.3 Use

Figure 14 provides a screenshot of the transformation configuration: there is one input (DSL) and one
output (XML) metamodel.

Figure 14. Configuration for DSL2XML

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 15

In Path Editor, the path of the DSL and XML metamodels are respectively associated with DSL and
XML. The IN field contains the path of the .xmi containing the model conforming to the DSL
metamodel, the OUT one, the path for the results.

2.4.3 Third step: XML2Text

The file previously generated is conform to the XML metamodel, and needs to be extracted into a real
XML file.

The XML to text transformation enables to generate a .dsldm file that will be included into a blank
project for DSL Tools, by replacing the .dsldm file. In the XML to Text ATL file, ensure that the output
filepath is correct, at the top of the file, as shown below (the configuration is detailed on Figure 15).

query XML2Text = XML!Root.allInstances()
 ->asSequence()
 ->first().toString2('').writeTo('C:… filepath… \\DSL_Result.dsldm');

Figure 15 Configuration for XML2Text

2.5 Example: PetriNet

The aim of this section is to illustrate the metamodel bridge through the study of a PetriNets example.
The first step deals with the DSL to EMF direction. For this purpose, a simple PetriNet metamodel
defined under DSL Tools, is considered (see Figure 16). It is possible to note that there is one
composition relationship, PlaceHasToken, which as a property ‘number’ (i.e. the number of token
contained by the place). There are also two relationships, PlaceToTransition and TransitionToPlace,
and both have a property ‘label’.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 16

Figure 16. PetriNet view with DSL Tools

This model can be used as input of the first transformation, XML to DSL, using the configuration
detailed in Figure 7. The DSL to KM3 transformation is then applied, using the configuration detailed in
Figure 9. This produces a KM3 model, which can be easily turned into an Ecore model using the
Ecore injector, and be displayed with the plugin Omondo’s EclipseUML (see Figure 17). It is possible
to note that PlaceHasToken, PlaceToTransition and TransitionToPlace become classes, linked by two
references (compositions for PlaceHasToken).

Figure 17. PetriNet view with EclipseUML plugin

In the process of turning this model into a DSL model, a KM3 model can be obtained using the Ecore
to KM3 extractor. The KM3 to DSL transformation (which configuration is shown in Figure 10)
produces a DSL model and then the DSL to XML transformation (which configuration is shown in
Figure 14) an XML model. Finally, the XML2Text extractor generates the .dsldm file. Figure 18
provides the result obtained when opening the file with DSL Tools. It may be noted that

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 17

TransitionToPlace and Place to Transition concepts are displayed twice, but only one contains its
properties.

Figure 18. DSL Tools view of the final result

3 The model bridge

3.1 Introduction

The transformation chains between a DSL domain model and an EMF model (and inversely) have
been defined in Section 2. However, there is still a lack for a tool enabling to transform DSL models to
and from EMF models. Such a tool is described in the present section.

The first step is to consider how models are viewed by both technologies. Basically, a model has to
conform to a domain model for MS/DSL and to an Ecore model for EMF.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 18

To store its models, Microsoft uses an XML schema, which does not directly map to the domain
model. With EMF, the models are stored in the XMI format and are explicitly conform to a metamodel.

To implement this bridge, information has to be grabbed from the DSL model file and transformed so
that it conforms to an EMF metamodel. To this end, a metamodel that represents DSL models has to
be built. DSL models conforming to this metamodel shall then be transformed into a models
conforming to a metamodel defined under EMF.

Figure 19 summarizes the different steps of the model bridge.

XML DSLModel MMa

DSL

Microsoft
DSL Tools

Eclipse EMF

C2

M3

M2

M1

Domain
model
MMa

DSL
model

Ma

XML
model

Ma

DSL
Model

Ma

C2 C2

KM2

KM2
Model

Ma

C2C2

C2

C2

Ma

DSLModel2KM2

KM22DSLModelDSLModel2XML

XML2DSLModel KM22MMa

MMa2KM2

Ecore

C2

C2

C2 C2

C2

C2 : conforms to

Figure 19. Model bridge overview

The first step consists in injecting the DSL model file to an XML model like for the .dsldm file in the
metamodel bridge.

The second step consists in transforming the XML model into a model conforming to the models DSL
metamodel (DSLModel). This one was defined to match Microsoft’s schema as closely as possible.
The transformations are XML2DSLModel and DSLModel2XML.

The third step relies on KM2 (a model representation) which is used like KM3 as a pivot between
technologies. The transformations are DSLModel2KM2 and KM22DSLModel.

The last step takes a KM2 model and the metamodel MMa defined under EMF as inputs and as output
a model that conforms to MMa. This is made by two transformations, the first one takes MMa has
input and generates the second ATL transformation with the specific rules for MMa, defining by this
mean a generic method.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 19

3.2 Microsoft DSL models

3.2.1 Models in Microsoft DSL Tools

From a DSL domain model, Visual Studio creates a specific editor for the models. A model is stored in
an .xml file, corresponding to an XML Schema. The Ms/DSL models can be represented by a unique
metamodel, close to the XML Schema.

The models files can be found in directory Visual Studio 2005\Projects\ProjectName\Debugging
ProjectName Debugging.

Figure 20. To the left a domain model and to the right a model from this domain model

A model is composed by model elements and links between them. A model element is an instance of
a domain model classifier. This latter is known by the attribute Type of model element. Links
correspond to relationships in domain model.

Figure 21 provides .xml schema viewed as a class diagram. The models DSL metamodel considered
in this study has been created this class diagram.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 20

MetaModel

+parentLink : string

ModelElement ElementLink Role

+value : string

Property

+SubStoreType : string

SubStore

+type : string

Element

+name : string

NamedElement

1
*

1 *
1

*

1

*

1 *

1 2

+Id : string

ElementId

Figure 21. XML Schema for MS DSL models representation

3.2.2 Models DSL metamodel

The considered models DSL metamodel is provided in Figure 22.

Some concepts of this metamodel differ from the XML schema:

• The root class is named Model instead of MetaModel because it applies on models and may
be confused.

• In the XML schema, a ModelElement may be composed of ModelElement. This case
corresponds to an embedding in the domain model. The type of relationship is known by the
attribute parentLink in ModelElement. The model elements which have this attribute are those
which are in the composition and not the one which contains them.

o In the metamodel, this is changed by adding a class EmbeddingLink between the
container and the contained ModelElement.

• The ElementLink in the XML schema are contained by ModelElement. An ElementLink
corresponds to a reference in the domain model. This latter is known by the attribute Type.

o In the metamodel, an ElementLink is named a ReferenceLink to be close to the
domain model.

• A ReferenceLink has two roles. In XML schema, a role has an attribute Id that corresponds to
a ModelElement Id. As a consequence, in the metamodel a role has a reference to a
ModelElement.

• The first role referenced the ModelElement that has the ElementLink and the second
referenced the ModelElement to the opposite.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 21

ModelElement ReferenceLink

+id : int

+type : string

Element

RoleProperty

Model

1

+roles2

1

+properties*

-element1

-role

1

1

-contents*

EmbeddingLink

1

*

1

-elements

*

1 *

+Name : string

NamedElement

Value

1
-value*

Figure 22. The models DSL metamodel

3.3 Models in Eclipse EMF

Like in Visual Studio DSL Tools, models can be created from a metamodel defined under Eclipse EMF
with a specific models editor. The difference is that the models serialization is here done by applying
the metamodel’s structure, so the model explicitly conforms to its metamodel.

Figure 23. In left a metamodel defined under EMF and in right a model example

At this stage, it is possible to note that the transformation from the models DSL metamodel to the
metamodel defined under EMF raises a problem, since the metamodel defined under EMF is variable.
The solution is to have a transformation that is generic for any metamodel.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 22

3.4 KM2 metamodel

As shown in Figure 19, the transformation chain uses an intermediary metamodel: KM2 (see Figure
24). This one is used like a pivot between models technologies like KM3 is for the metamodels. A KM2
model is composed of model elements. A model element has an attribute name which is the type of
the corresponding class in the metamodel. This one is known by the attribute metamodel in class
Model. A model element has also properties which correspond to attributes and references in the
metamodel.

A property contains a value that can be of different types:

• A PrimitiveVal corresponds to a simple type attribute (String, Integer, Boolean, Double).

• A ModelElementRefVal corresponds to a reference in the metamodel.

• A ModelElementVal corresponds to a composition in the metamodel.

• A SetVal contains value, it is used to represents attributes or references with cardinality > 1.

Figure 24. KM2 metamodel

Figure 25 describes an instantiation example containing a metamodel which has two classes named
Class and Attribute and its corresponding KM2 model. A ModelElement corresponds to a Class type,
this one has a property corresponding to the attribute name and a property attributes corresponding to
the composition in the metamodel. This property has a SetVal value because attributes has multiple
cardinality.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 23

Figure 25. A KM2 instantiation example

3.5 ATL Transformations

This section is dedicated to the description of the ATL transformations that are part of the models
bridge. The first transformation is XML2DSLModel that takes as input the XML model of a DSL model
file and produces a DSLModel model. The second transformation is DSLModel2KM2 that generates a
KM2 model from this DSLModel model. Thirdly, the transformation KM22MMa generates a model
conforming to a metamodel MMa defined under EMF.

3.5.1 XML to DSLModel

3.5.1.1 Principle

DSL models are serialized with a unique XML schema (it is the same for any models). A metamodel,
named DSLModel, that includes essential information from the .xml file has been designed. Like for
the metamodel bridge, the .xml file is injected into an XML model. From this point, the first ATL
transformation (XML2DSLModel) can be used to get a DSLModel.

The model file contains some information about model representation that is not taken into account in
the metamodel. The only XML elements that are recognized are:

• om:MetaModel is mapped to a DSLModel!Model;

• om:ModelElement is mapped to a DSLModel!ModelElement;

• om:Property is mapped to a DSLModel!Property;

• om:ElementLink is mapped to a DSLModel!ReferenceLink;

• om:Role is mapped to a DSLModel!Role.

In the .xml file, the XML element om:Property represents a metamodel’s class (or relationship) value
property. It has a name and a value. It is represented in the same way in DSLModel.

The XML element om:ElementLink is contained by a om:ModelElement. It represents references
between model elements. An element link contains two roles, the first one referred to the containing
model element (source) and the second referred to the referring model element (type). A model
element is associated to element links; they have the same attribute Id. Because, in DSL, reference
relationships are viewed as classes, they can have attributes, so associating a model element to
element links enables to have properties that represent the relationship’s attributes. In DSLModel,
these model elements are of type ModelElementLink and have reference links to the element links
they are associated with.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 24

In the .xml file, a om:ModelElement can have children with name om:ModelElement, it corresponds to
an embedding relationship in the domain model. In this case, the children have an attribute parentLink
which is a string containing the name of the embedding relationship. In DSLModel, this is represented
this by a class EmbeddingLink which contains ModelElement (the children in the .xml file), and this
class EmbeddingLink is contained by a ModelElement (the parent in the .xml file).

Creating an EmbeddingLink is achieved as follows: from a ModelELement, a set of String that
contains the ParentLink is created with the helper getParentLinks(). After that, a Sequence of
Sequence of XML!Element is created by placing in a Sequence the XML!Element that have the same
attribute ParentLink with the helper SequenceOfSequence(). Then, an EmbeddingLink is created for
each distinct element in the Set, and then the Sequence of Sequence named allchilds is placed into
elements. See the code below for further details.

using {
 allEmbeddingLinks : Set (String) =
 e.getParentLinks()->asSet();
 allchilds : Sequence (Sequence (XML!Element)) =
 e.SequenceOfSequence(allEmbeddingLinks);
}
to
 me : DSLModel!ModelElement (
 type <- thisModule.subNamespace(e.getAttrVal('Type')),
 id <- e.getAttrVal('Id'),
 properties <- e.children->select(c | c.oclIsTypeO f(XML!Element)
 and c.name= 'om:Property'),
 embeddinglinks <- Sequence {p},
 referencelinks <- e.children->select(l | l.oclIsT ypeOf(XML!Element)
 and l.name = 'om:ElementLink')
),
 p : distinct DSLModel!EmbeddingLink foreach (pl in allEmbeddingLinks) (
 name <- pl,
 elements <- allchilds
)

In this code, it is possible to notice that, for the attribute type of the created ModelElement, we use the
helper subNamespace because in the .xml file the type of a ModelElement is appended to the
namespace of the domain model (the namespace is cut and the type kept).

As introduced previously, some XML elements are omitted. These elements are those
om:ModelElement whose type ends by Diagram (called elementToAvoid), and the om:ElementLink
with type Microsoft.VisualStudio.Modeling.SubjectHasPresentation. To this end, filters are defined
within the rules. The code below provides a filter example: among XML!Element, those with attribute
name equals to om:ModelElement are first filtered. Then, the filter verifies that the element is not an
elementToAvoid or a child of this latter. Finally, it checks that the element is not a ModelElement used
to describe an ElementLink.

rule ModelElement {
 from
 e : XML!Element (
 if e.name= 'om:ModelElement'
 then if e = thisModule.elementToAvoid()
 then false
 else if
e.isChildrenOf(thisModule.elementToAvoid())
 then false
 else not e.isElementLink()
 endif
 endif
 else false
 endif
)

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 25

3.5.1.2 Limitations

This transformation contains some limitations:

• The enumerations are not recognized;

• The simple types for a property are limited to Integer, String and Boolean.

3.5.1.3 Use

The aim of this part is to explain the use of this ATL transformation. Running this transformation
requires an example of DSL model in .xml format. This file has to be injected into an XML model. The
corresponding domain model, which is obtained after running the XML2DSL presented in the
metamodel bridge is also required. Finaly, the transformation requires three metamodels: XML, DSL
and DSLModel in Ecore format. Figure 26 provides a screenshot of the transformation configuration.

Figure 26. Configuration of the XML2DSLModel transformation

There are two input (XML and DSL) and one output (DSLModel) metamodels. In Path Editor you place
in XML the path of the XML metamodel, you do the same for DSL and DSLModel. The field IN1
contains the path of the xml model, the field IN2 contains the path of the DSL model (it is the domain
model that goes with the model file in xml) and the field OUT, the path for the results.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 26

3.5.2 DSLModel to KM2

3.5.2.1 Principle

KM2 is a representation of models independent of their metamodel. It is quite the same as DSLModel
that is also independent of the domain model because it is close to the XML schema.

Some elements are equivalent between both metamodels. A DSLModel!Model becomes a
KM2!Model, a DSLModel!ModelElement becomes a KM2!ModelElement. The attribute type of
DSLModel!ModelElement becomes the attribute name for the KM2!ModelElement.

Attributes and references correspond to properties in KM2. Whereas, they are separated in
DSLModel, attributes are properties, reference relationships are ReferenceLink and embedding
relationships are represented by EmbeddingLink. As a consequence, these three elements are taken
for a DSLModel!ModelElement and put into KM2!Property.

rule ModelElement {
 from
 me : DSLModel!ModelElement (
 me.oclIsTypeOf(DSLModel!ModelElement)
)
 to
 kme : KM2!ModelElement (
 name <- me.type,
 id <- me.id,
 properties <- Sequence {
 me.properties->asSequence(), -- Attributes
 me.embeddinglinks->asSequence(), -- Compositions
 me.getReferences() -- References
 })}

Creating a KM2!Property from a DSLModel!ReferenceLink si achieved by selecting the last
DSLModel!Role (the type role) with the helper getReferences().

A KM2 property may have a simple value or a Set value, this one is created if the type of the
ReferenceLink or the EmbeddingLink that is used to create the property corresponds to a Relationship
in the DSL model that has a multiplicity > 1. The following helpers are used for this purpose:

For an EmbeddingLink:

-- This helper returns the role corresponding to th e embedding link
helper context DSLModel!EmbeddingLink def:getRole() : DSL!Role =
 let a : DSL!Relationship =
 DSL!Relationship.allInstances()
 ->select(e | e.name = self.name)->first()
 in a.roles->select(e | e.source.name = self.owner.ty pe)->first();

It is called as follows in rules:

from p : DSLModel!EmbeddingLink (
 p.getRole().max = 0 or p.getRole().max > 1
)

For a ReferenceLink, the DSLModel!Role used to make the property is selected:

-- This helper returns a boolean which indicates if the relationship corresponding to the role
has a max cardinality > 1
helper context DSLModel!Role def: isMultiple() : Boolean =
 let a : DSL!Role = DSL!Role.allInstances()
 ->select (e | e.relation.name = self.owner.type
 and e.name = self.name)->first()
 in if (a.max = 1) then false else true endif;

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 27

3.5.2.2 Limitations

In the metamodel bridge, if a DSL relationship has attributes or supertypes, it becomes a class in
KM3. As a consequence, when passing from a DSLModel to KM2, it is necessary to check that the
KM2!ModelElement with type of the relationship that becomes a class in KM3 are linked. These
ModelElement can be easily recognized because, in DSLModel, they are ModelElementLink. So a
ModelElementLink with properties becomes a ModelElement in KM2. Current implementation does not
handle this case, so it is recommended not to use DSL domain models that does not contain
relationships with properties.

3.5.2.3 Use

Running this ATL transformation requires two models and their metamodels:

• The first model is the previous output from XML2DSLModel transformation and the DSLModel
metamodel.

• The second model is the corresponding DSL model like in the previous transformation and the
DSL metamodel.

• The KM2 metamodel for output.

Figure 27 provides a screenshot of the transformation configuration.

Figure 27. Screenshot of the DSLModel2KM2 configuration

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 28

There are two input (DSLModel and DSL) and one output (KM2) metamodels. In Path Editor, the path
of the DSL, DSLModel and KM2 metamodel are respectively associated with DSL, DSLModel and
KM2. The field IN1 contains the path of the DSLModel model created with the XML2DSLModel
transformation, the field IN2 contains the path of the DSLModel and the field OUT, the path for the
results.

3.5.3 KM2 to DSLModel

3.5.3.1 Principle

This transformation is the inverse of DSLModel2KM2, it takes a KM2 model as input and produces a
DSLModel model. As noticed previously, KM2 and DSLModel have many similarities, so the major
difficulty is here to recognized whether KM2!Property will be a DSLModel!Property,
DSLModel!EmbeddingLink or a DSLModel!ReferenceLink. Another difficulty is to make for
DSLModel!Reference the corresponding DSLModel!ModelElementLink that corresponds to a
relationship in the metamodel (the DSL one).

The first problem is addressed using the three following helpers:

• getProperties() to recognize which KM2!Property will be DSLModel!Property;

• getPropertyContainer() to recognize which KM2!Property will be DSLModel!EmbeddingLink;

• getPropertyReference() to recognize which KM2!Property will be DSLModel!ReferenceLink.

Those helpers are shown below, the first is getProperties and the other one is getPropertyReference.
The last helper is shown here because it is the same as the latter except that it recognizes
composition.

-- This helper returns a Sequence of KM2!Property t hat corresponds to DSLModel!Property
-- From the name (type) of the CONTEXT it makes a S equence of KM3!Attribute present in
-- the metamodel and then select in the CONTEXT pro perties the corresponding KM2!Property.
-- CONTEXT: KM2!ModelElement
-- RETURN: Sequence(KM2!Property)
helper context KM2!ModelElement def: getProperties() : Sequence (KM2!Property) =
let a : Sequence (KM3!Attribute) =
 KM3!Class.allInstances()->select(c | c.name = sel f.name)
 ->collect(p | p.structuralFeatures)->flatten()
 ->select(a | a.oclIsTypeOf(KM3!Attribute))->asSeq uence()
in
 a->iterate(e;acc : Sequence (KM2!Property) = Sequence {} |
 if self.properties->select(p | p.name = e.name)->f irst().oclIsUndefined()
 then acc
 else acc -> including(self.properties->select(p | p.na me = e.name)->first())
 endif);

-- This helper returns a Sequence of KM2!Property t hat corresponds to references in the
metamodel
-- CONTEXT: KM2!ModelElement
-- RETURN: Sequence(KM2!Property)
helper context KM2!ModelElement def: getPropertyReference() : Sequence (KM2!Property) =
 let a : Sequence (KM3!Reference) =
 KM3!Class.allInstances()->select(c | c.name = se lf.name)->collect(p |
p.structuralFeatures)
 ->flatten()->select(a | a.oclIsTypeOf(KM3!Refere nce))->select(b | not
b.isContainer)->asSequence()
 in
 a->iterate(e;acc : Sequence (KM2!Property) = Sequence {} |
 if self.properties->select(p | p.name = e.name)-
>first().oclIsUndefined()
 then acc
 else acc -> including(self.properties->select(p | p.na me =
e.name)->first())
 endif);

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 29

3.5.3.2 Rules specifications

Here is a description of the rule composing the transformation:

• Rule Model: From a KM2!Model, a DSLModel!Model is created.

o The metamodel in KM2 corresponds to the domain model.

o They got the same contents.

• Rule ModelElement: From a KM2!ModelElement, a DSLModel!ModelElement is created.

o The type is the ModelElement name in KM2.

o Their Id corresponds.

o The ModelElement properties are selected with getProperties helper.

o The ModelElement embeddingLinks are selected with the getPropertyContainer
helper.

o The ModelElement referenceLinks are selected with the getPropertyReference helper.

• Rule ReferenceLink: This one is used to create ReferenceLink from a KM2!Property that
corresponds to a reference in the metamodel. A KM2!Property may contain several
ModelElementRefVal (with a SetVal). However, in DSLModel, a ReferenceLink contains two
roles and a DSLModel!Role can refer to only one ModelElement, so a ReferenceLink has to
be created for each KM2!ModelElementRefVal in the KM2!Property. This is achieved by using
the helper getRefVal() that returns a Sequence of KM2!ModelElementRefVal and for each
element in this sequence a DSLModel!ReferenceLink is created.

o The ModelElementRefVal from the sequence is also used to create the roles.

• Rule Role: From a KM2!ModelElementRefVal, two DSLModel!Role are created (a
DSLModel!ReferenceLInk contains two roles). In order to create a DSLModel!Role, it is
required to know its name and what element it refers to. This latter is the one in
KM2!ModelElementRefVal, and the name is the name of the KM2!Property that got the
ModelElementRefVal. In order to create the second role, the metamodel (the DSL model) has
to be searched to retrieve the opposite by using the helper getOpposite().

o The referred element in the opposite role is the KM2!ModelElement that have the
KM2!Property used to create the roles.

• Rule EmbeddingLink: From a KM2!Property which is a container (a composition), a
DSLModel!EmbeddingLink is created.

o The name is the name of the DSL!Relationship from the domain model.

o The elements are the ones in the values of the KM2!Property.

• Rule Property: From a KM2!Property that corresponds to an Attribute in the metamodel, a
DSLModel!Property is created.

o Their names correspond.

o Their values correspond.

3.5.3.3 Limitations

This version does not create DSLModel!ModelElementLink.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 30

3.5.3.4 Use

This transformation requires three metamodels and their models in input and one in output.

• The three inputs are:

o The DSL metamodel and the model example;

o The KM3 metamodel and the model example;

o The KM2 metamodel and the model example.

• The output is the DSLModel metamodel.

Figure 28 provides a screenshot of the transformation configuration: there are three input (DSL, KM3
and KM2) and one output (DSLModel) metamodels. In Path Editor, the path of the DSL, KM3, KM2
and DSLModel metamodels are respectively associated with DSL, KM3, KM2 and DSLModel. The
field IN1 contains the path of the KM2 model example (the one created with DSLMode2KM2 can be
used), the field IN2 contains the path of the KM3 model, the field IN3 contains the DSL model, and the
field OUT, the path for the results.

Figure 28. Configuration for KM22DSLModel

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 31

3.5.4 KM2 to Metamodel

3.5.4.1 Principle

The last transformation must lead to a model that directly conforms to its metamodel defined under
EMF. This last is variable, so a transformation written between KM2 and the metamodel will work for
only one metamodel. As a consequence, the transformation must be decomposed in two steps, as
shown in Figure 29.

KM2

KM2 model

Ma

KM3 model
MMa

Model Ma

ATL
Generate

ATL model

ATL
DSLModel

to MMa

C2 C2

input

output

M2

M1

Figure 29. Overview of KM22Metamodel

The first step is to write a transformation that takes in input a model in KM3, it is the metamodel that
corresponds to the models, and generates an ATL transformation which contains the necessary rules
corresponding to the metamodel for making the models transformation. This solution is generic for any
metamodel.

Figure 30 illustrates the process for obtaining this. From a metamodel MMa, the transformation B
creates an ATL model C (i.e. a transformation). This one takes in input a KM2 model and outputs a
model Ma directly conforms to MMa.

MMa

KM2 model Ma Model M’a

A

B

C

M’a = A(Ma,MMa) = C(Ma)
C = B(MMa)

Figure 30. Process to generate a transformation

3.5.4.2 KM32ATL_KM22MM

The transformation KM32ATL-KM22MM takes in input a KM3 model that is the model’s metamodel to
be transformed, and generates an ATL model that can be injected into an ATL file. This one is a
transformation that takes in input a KM2 model and produces a model that explicitly conforms to the
input’s metamodel in KM3.

The principle is to create an ATL model from the input KM3 model. To this end, an ATL!Module is
created from the KM3!Metamodel (this is achieved by the rule Module). An ATL!Module has a name,
made with the String KM2 attached to the name of the KM3!Package, is composed of inModels (that is

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 32

KM2), outModels (that is the KM3!Package), elements (that correspond to theKM3!Class) and the
library KM2Tools (which contains the helpers for the generated transformation).

For each KM3!Class from the input model KM3, a corresponding rule is created. This rule has an
inPattern of type KM2!ModelElement with a filter with the name of the KM3!Class (that is also the
name of the KM2!ModelElement). The type of the outPattern is the one of the KM3!Class. This
outPattern contains bindings that correspond to the attributes and references of the KM3!Class.

For each KM3!Attribute and KM3!Reference, a binding containing an ATL!OperationCallExp to an
helper from the library KM2Tools is created.

3.5.4.3 Use

Running this transformation requires the KM3 model’s metamodel in Ecore format, as well as the ATL
metamodel in MDR (MOF 1.4) format. The result of this transformation has to be serialized by using
TCS. This step produces an ATL file that corresponds to the transformation KM2 to Metamodel. Figure
31 shows the transformation configuration.

Figure 31. KM32ATL_KM22MM configuration

In this configuration, the KM3 metamodel, a KM3 model, and the ATL metamodel in MDR format are
required. In the path editor, the path of the KM3 metamodel is associated with KM3 and the field IN
contains the path of the KM3 model. The field ATL contains the path of the ATL metamodel (be care to
select model handler MDR), and the field OUT, the path for the result.

3.6 Example: Small Petri Net

This section describes a use case of the model bridge. In this scope, a simple Petri Net metamodel
has been considered. However, due to the limitations of the model bridge, this metamodel is not the

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 33

same as in the metamodel bridge example: it does not define any DSL relationship containing a
property since this one would be transformed into a KM3 class and this case is not implemented (see
Section 3.5.2.2.).

The domain model used for this example is presented in Figure 32. This domain model only contains
Place and Transition. A Token is represented by an Integer property in Place.

Figure 32. Small Petri net domain model

A simple Petri net example that contains three places and one transition, with Place1 containing two
tokens, has been designed using the DSL Tools model editor.

Figure 33. A simple Petri net model SmallPetriNet1.xml

The first step is to use the metamodel bridge to transform the domain model into a KM3 model and
then inject this one into an Ecore model (see Section 2.5).

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 34

The file SmallPetriNet1.xmi is then used with the XML2DSLModel transformation (see Section 3.5.1.3)
to produce a DSLModel model (Model1.Spn.dslmodel.ecore). This model now has to be transformed
into a KM2 model by using the DSLModel2KM2 transformation (see Section 3.5.2.3): this generated
result is the file Model1.Spn.km2.ecore.

Once a KM2 model has been built, it is possible to use the KM22SmallPetriNet transformation. This
one is generated by the KM32ATL_KM22MM transformation. Figure 34 provides a screenshot of the
configuration of the KM22SmallPetriNet transformation.

To use this transformation, the SmallPetriNet.ecore file, which corresponds to the SmallPetriNet
metamodel in Ecore format, is required. It is obtained by using the Ecore injector on the
SmallPetriNet.km3 file. The injector is available with ATL Development Tools (ADT) [10]. The KM2
metamodel and the KM2 model Model1.Spn.km2.ecore are also required.

In Path Editor, the KM2 field contains the path of KM2 metamodel, and the field IN, the path of the file
Model1.Spn.km2.ecore. The metamodel in output is SmallPetriNet (corresponding to
SmallPetriNet.ecore). The library KM2Tools path also requires to be filled.

The result is the file Model1.Spn.ecore.

Figure 34. Configuration for KM22SmallPetriNet

4 Extension

This section provides explanations on how to keep the information that is lost during the
transformation in the metamodel bridge from a DSL model into a KM3 model.

In a domain model, classes and relationships are placed at the same level. Relationships can be
viewed as association classes like in UML. Figure 35 represents a simple domain model example with

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 35

a relationship BReferencesC between a ConceptB class and a ConceptC. This relationship has an
attribute Property of type String. Figure 36 shows this domain model in UML representation. The
relationship is viewed as an association class with an attribute Property.

Figure 35. Simple domain model example

ConceptA ConceptB

-Property : string

BReferencesC

0..1 +ReferencedC

* +ReferingBs

1

+Bs

*

ConeptC

1

-Cs

*

Figure 36. The same domain model view with UML representation

During transformation into KM3, the implemented solution is to transform relationships that have class
characteristics (inheritance, properties) into classes. The obtained result is provided in Figure 37.

ConceptA

ConceptC

ConceptB

+Property : string

BReferencesC

1

+Bs

*

1

+Cs

*

+ReferringBs

*
+ReferencedC0..1

+ReferringBs*

+ReferencedC

0..1

Figure 37. The result after DSL2KM3 transformation

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 36

One loses the information that encodes that BReferencesC is a relationship and not a class. Saving
these data may be achieved by enlarging the KM3 so that it takes this information into account.
However, in this case, this will lead to have a large metamodel that be not use correctly.

Another solution would be to keep this information into a model independent of metamodel DSL and
metamodel KM3. This model must keep information lost during the DSL to KM3 transformation and
allows finding them during the KM3 to DSL transformation.

Such a model can be called KM3Annotations, and has to conform to a metamodel. It must be able to
store the information contained in the metamodel source (here DSL) which is not retranscribed in
KM3.

DSL = KM3 + KM3Annotations

In the scope of the considered example, the KM3Annotations model must contain the following
information:

• BReferencesC is a relationship.

• BReferencesC links a class of type ConceptB to a class of type ConceptC.

• BReferencesC has two association ends: ReferringBs and ReferencedC with their cardinality.

This information has to be stored in KM3Annotations conforming to its metamodel (it is not a text
format representation). However, it would be interesting to be able to specify this information manually
in some cases: for instance, when starting with a KM3 model that has to be transformed into a DSL
model, it should be possible to define what class has to be a relationship.

Implementing this extension therefore requires defining a KM3Annotations metamodel which contains
information that cannot be present in the KM3, thus allowing to exchange models between various
technical spaces without losing the intent of the initial representation.

5 References

[1] Microsoft DSL Tools web site, http://lab.msdn.microsoft.com/vs2005/teamsystem/Workshop/DSLTools/.

[2] The Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/.

[3] The ATLAS Transformation Language (ATL), http://www.eclipse.org/gmt.

[4] The Eclipse project, http://www.eclipse.org/.

[5] KM3 User Manual. The Eclipse Generative Model Transformer (GMT) project, http://eclipse.org/gmt/.

[6] F. Budinsky, and D. Steinberg, and E. Merks, and R. Ellersick, and T. J. Grose: Eclipse Modeling

Framework, Chapter 5 Ecore Modeling Concepts, Addison-Wesley.

[7] OMG/MOF. Meta Object Facility (MOF), v2.0. OMG Document formal/03-10-04, April 2004. Available

from www.omg.org.

[8] OMG/MOF. Meta Object Facility (MOF), v1.4. OMG Document formal/02-04-03, April 2002. Available

from www.omg.org.

[9] The Omondo EclipseUML plugin. Available at http://www.omondo.com/download/index.html.

[10] The ATL Development Tools (ADT). The Eclipse Generative Model Transformer (GMT) project,

http://eclipse.org/gmt/.

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 37

Appendix A The XML metamodel in KM3
format

package XML { 1
 abstract class Node { 2
 attribute startLine [0- 1] : Integer; 3
 attribute startColumn [0- 1] : Integer; 4
 attribute endLine [0- 1] : Integer; 5
 attribute endColumn [0- 1] : Integer; 6
 attribute name : String; 7
 attribute value : String; 8
 reference parent [0- 1] : Element oppositeOf children ; 9
 10
 } 11
 12
 class Attribute extends Node { 13
 14
 } 15
 16
 class Text extends Node { 17
 18
 } 19
 20
 class Element extends Node { 21
 reference children [*] ordered container : Node oppositeOf parent ; 22
 23
 } 24
 25
 class Root extends Element { 26
 27
 } 28
} 29

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 38

Appendix B The KM3 metamodel in KM3
format

package KM3{ 1
 abstract class LocatedElement { 2
 attribute location : String; 3
 } 4
 5
 abstract class ModelElement extends LocatedElement { 6
 attribute name : String; 7
 reference "package" : Package oppositeOf contents ; 8
 } 9
 10
 class Classifier extends ModelElement {} 11
 12
 class DataType extends Classifier {} 13
 14
 class Enumeration extends Classifier { 15
 reference literals [*] ordered container : EnumLiteral ; 16
 } 17
 18
 class EnumLiteral extends ModelElement {} 19
 20
 class Class extends Classifier { 21
 attribute isAbstract : Boolean; 22
 reference supertypes [*] : Class ; 23
 reference structuralFeatures [*] ordered container : StructuralFeature oppositeOf 24
owner ; 25
 } 26
 27
 class StructuralFeature extends ModelElement { 28
 attribute lower : Integer; 29
 attribute upper : Integer; 30
 attribute isOrdered : Boolean; 31
 attribute isUnique : Boolean; 32
 reference owner : Class oppositeOf structuralFeatures ; 33
 reference type : Classifier ; 34
 } 35
 36
 class Attribute extends StructuralFeature {} 37
 38
 class Reference extends StructuralFeature { 39
 attribute isContainer : Boolean; 40
 reference opposite [0- 1] : Reference ; 41
 } 42
 43
 class Package extends ModelElement { 44
 reference contents [*] ordered container : ModelElement oppositeOf "package" ; 45
 reference metamodel : Metamodel oppositeOf contents ; 46
 } 47
 48
 class Metamodel extends LocatedElement { 49
 reference contents [*] ordered container : Package oppositeOf metamodel ; 50
 } 51
} 52

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 39

Appendix C The DSL metamodel in KM3
format

-- @name DSL 1
-- @version 1.1 2
-- @authors Guillaume Hillairet (g.hillairet@gmai l.com), William Piers 3
(willaim.piers@gmail.com) 4
-- @date 2005/06/14 5
-- @description This meta-model represents domain models (or metamodels in MDA) 6
used by Microsoft DSL Tools (May 2005 CTP release f or Visual Studio 2005 Beta 2). With DSL 7
Tools you can create your own designer for a visual domain specific language that is represent 8
by a domain model. The tools generate the code of a graphical editor for the language you 9
defined in a domain model. 10
-- @see http://lab.msdn.microsoft.com/teamsystem /workshop/dsltools/ 11
 12
package DSL { 13
 14
 abstract class NamedElement { 15
 attribute name : String; 16
 attribute identity : String; 17
 } 18
 19
 abstract class LoadedElement extends Namespace { 20
 attribute isLoaded : Boolean; 21
 } 22
 23
 abstract class Namespace extends NamedElement { 24
 attribute namespace : String; 25
 } 26
 27
 -- @comment This class represents a domain model wh ich contains classes and 28
relationships. 29
 class DomainModel extends LoadedElement { 30
 reference classifiers [*] container : Classifier oppositeOf domainModel ; 31
 reference types [*] container : Type ; 32
 } 33
 -- @begin Classifiers 34
 -- @comment This class represents a Classifier. It has properties, may have one super 35
type and can be abstract. 36
 abstract class Classifier extends LoadedElement { 37
 attribute isAbstract : Boolean; 38
 reference properties [*] container : ValueProperty oppositeOf owner ; 39
 reference superType [0- 1] : Classifier oppositeOf subTypes ; 40
 reference subTypes [*] : Classifier oppositeOf superType ; 41
 reference domainModel : DomainModel oppositeOf classifiers ; 42
 } 43
 -- @comment This class corresponds to a class in DS L. It extends Classifier. 44
 class Class extends Classifier {} 45
 -- @comment This class corresponds to a relationshi p in DSL. A relationship is view as 46
a class so it extends Classifer.It has two roles, a nd can be an embedding or a reference. 47
 class Relationship extends Classifier { 48
 attribute isEmbedding : Boolean; 49
 reference roles [2- 2] container : Role oppositeOf relation ; 50
 } 51
 -- @comment This class represents a role. A role ca n be view as an association end, it 52
has cardinality (min, max) and can be ordered. 53
 class Role extends NamedElement { 54
 attribute min : Integer; 55
 attribute max : Integer; 56
 attribute isUnbounded : Boolean; 57
 attribute accepts : String; 58
 attribute isOrdered : Boolean; 59
 attribute isNavigableFrom : Boolean; 60
 attribute isPropertyGenerator : Boolean; 61

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 40

 62
 reference source : Classifier ; 63
 reference type : Classifier ; 64
 reference relation : Relationship oppositeOf roles ; 65
 } 66
 67
 -- @end Classifiers 68
 69
 -- @begin Types 70
 -- @comment This class represents a property. A pro perty is had by a classifier, the 71
type of the property is represent by the class Type . 72
 class ValueProperty extends NamedElement { 73
 reference owner : Classifier oppositeOf properties ; 74
 reference type : Type ; 75
 } 76
 77
 abstract class Type extends Namespace {} 78
 79
 class SimpleType extends Type {} 80
 81
 class EnumerationLiteral extends NamedElement { 82
 attribute value : Integer; 83
 } 84
 -- @comment This class represents an enumeration. 85
 class Enumeration extends Type { 86
 reference literals [*] container : EnumerationLiteral ; 87
 } 88
 -- @end Types 89
} 90

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 41

Appendix D The KM2 metamodel in KM3
format

package KM2 { 1
 2
 abstract class LocatedElement { 3
 attribute location : String; 4
 } 5
 6
 abstract class NamedElement extends LocatedElement { 7
 attribute name : String; 8
 } 9
 10
 class Model extends LocatedElement { 11
 attribute metamodel : String; 12
 reference contents [*] ordered container : ModelElement ; 13
 } 14
 15
 -- the name of a ModelElement is the name of its ty pe 16
 class ModelElement extends NamedElement { 17
 attribute id [0- 1] : String; 18
 reference properties [*] ordered container : Property oppositeOf owner ; 19
 } 20
 21
 class Property extends NamedElement { 22
 reference owner : ModelElement oppositeOf properties ; 23
 reference value container : Value oppositeOf owner ; 24
 } 25
 26
 27
-- Values 28
 abstract class Value extends LocatedElement { 29
 reference owner : Property oppositeOf value ; 30
 reference set [0- 1] : SetVal oppositeOf contents ; 31
 } 32
 33
 class ModelElementVal extends Value { 34
 reference element container : ModelElement ; 35
 } 36
 37
 class ModelElementRefVal extends Value { 38
 reference element : ModelElement ; 39
 } 40
 41
 class SetVal extends Value { 42
 reference contents [*] ordered container : Value oppositeOf set ; 43
 } 44
 45
 -- PrimitiveValues 46
 abstract class PrimitiveVal extends Value { 47
 48
 } 49
 50
 class BooleanVal extends PrimitiveVal { 51
 attribute value : Boolean; 52
 } 53
 54
 class DoubleVal extends PrimitiveVal { 55
 attribute value : Double ; 56
 } 57
 58
 class IntegerVal extends PrimitiveVal { 59
 attribute value : Integer; 60
 } 61

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 42

 62
 class StringVal extends PrimitiveVal { 63
 attribute value : String; 64
 } 65
 -- End PrimitiveValues 66
-- End Values 67
} 68

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 43

Appendix E The DSLModel metamodel in KM3
format

-- @name DSLModel 1
-- @version 1 2
-- @domains DSL models 3
-- @authors Hillairet Guillaume (g.hillairet@gmail .com) 4
-- @date 2005/07/05 5
-- @description This metamodel represents DSL model s used by Visual Studio DSL Tools to 6
represents models for a domain model. Those models are stored in an xml file, this metamodel 7
captures informations about model's elements but no t the model's graphical representation. 8
 9
package DSLModel { 10
 -- @begin Model's Elements 11
 class Model { 12
 attribute domainModel : String; 13
 reference contents [*] ordered container : ModelElement ; 14
 } 15
 16
 abstract class Element { 17
 attribute type : String; 18
 attribute id : String; 19
 } 20
 21
 class ModelElement extends Element { 22
 reference parentLink : EmbeddingLink oppositeOf elements ; 23
 -- a Property is an Attribute in domain model 24
 reference properties [*] container : Property oppositeOf owner ; 25
 -- a EmbeddingLink is an Embed relationship in doma in model 26
 reference embeddinglinks [*] container : EmbeddingLink oppositeOf owner ; 27
 -- a ReferenceLink is a Reference relationship in d omain model 28
 reference referencelinks [*] container : ReferenceLink oppositeOf owner ; 29
 } 30
 31
 class ModelElementLink extends ModelElement { 32
 reference links [*] : ReferenceLink oppositeOf modelElement ; 33
 } 34
 -- @end Model's Elements 35
 36
 -- @begin Links 37
 38
 -- EmbeddingLink represents embedding relationships 39
 class EmbeddingLink extends NamedElement { 40
 reference owner [0- 1] : ModelElement oppositeOf embeddinglinks ; 41
 reference elements [*] container : ModelElement oppositeOf parentLink ; 42
 } 43
 44
 -- ReferenceLink represents reference relationships 45
 class ReferenceLink extends Element { 46
 reference owner [0- 1] : ModelElement oppositeOf referencelinks ; 47
 reference modelElement : ModelElementLink oppositeOf links ; 48
 reference roles [2- 2] container : Role oppositeOf owner ; 49
 } 50
 -- @end Links 51
 52
 abstract class NamedElement { 53
 attribute name : String; 54
 } 55
 56
 class Property extends NamedElement { 57
 reference owner : ModelElement oppositeOf properties ; 58
 reference value container : Value ; 59
 } 60
 61

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 44

 class Role extends NamedElement { 62
 reference element : ModelElement ; 63
 reference owner : ReferenceLink oppositeOf roles ; 64
 } 65
 66
 -- @begin Value 67
 abstract class Value {} 68
 69
 class IntegerValue extends Value { 70
 attribute value : Integer; 71
 } 72
 73
 class DoubleValue extends Value { 74
 attribute value : Double ; 75
 } 76
 77
 class BooleanValue extends Value { 78
 attribute value : Boolean; 79
 } 80
 81
 class StringValue extends Value { 82
 attribute value : String; 83
 } 84
 -- @end Value 85
} 86

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 45

Appendix F The ATL metamodel in KM3 format

package Core { 1
 class Element { 2
 attribute location : String; 3
 } 4
} 5
 6
package Types { 7
 abstract class CollectionType extends OclType { 8
 reference elementType container : OclType oppositeOf collectionTypes ; 9
 10
 } 11
 12
 abstract class OclType extends OclExpression { 13
 reference definitions [*] : OclContextDefinition oppositeOf context_ ; 14
 reference oclExpression [*] : OclExpression oppositeOf type ; 15
 reference "operation" [0- 1] : Operation oppositeOf returnType ; 16
 reference mapType2 [0- 1] : MapType oppositeOf valueType ; 17
 reference "attribute" : Attribute oppositeOf type ; 18
 reference mapType [0- 1] : MapType oppositeOf keyType ; 19
 reference collectionTypes [0- 1] : CollectionType oppositeOf elementType ; 20
 reference tupleTypeAttribute [*] : TupleTypeAttribute oppositeOf type ; 21
 reference variableDeclaration [*] : VariableDeclaration oppositeOf type ; 22
 attribute name ordered : String; 23
 } 24
 25
 class StringType extends Primitive { 26
 } 27
 28
 abstract class Primitive extends OclType { 29
 } 30
 31
 class RealType extends NumericType { 32
 } 33
 34
 class TupleType extends OclType { 35
 reference attributes [*] container : TupleTypeAttribute oppositeOf tupleType ;36
 37
 } 38
 39
 class SequenceType extends CollectionType { 40
 41
 } 42
 43
 class BooleanType extends Primitive { 44
 45
 } 46
 47
 class OclModelElement extends OclType { 48
 reference model : OclModel oppositeOf elements ; 49
 50
 } 51
 52
 class SetType extends CollectionType { 53
 54
 } 55
 56
 class BagType extends CollectionType { 57
 58
 } 59
 60
 class OrderedSetType extends CollectionType { 61
 62
 } 63

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 46

 64
 abstract class NumericType extends Primitive { 65
 66
 } 67
 68
 class TupleTypeAttribute extends Element { 69
 reference type container : OclType oppositeOf tupleTypeAttribute ; 70
 reference tupleType : TupleType oppositeOf attributes ; 71
 attribute name ordered : String; 72
 73
 } 74
 75
 class IntegerType extends NumericType { 76
 77
 } 78
 79
 class MapType extends OclType { 80
 reference valueType container : OclType oppositeOf mapType2 ; 81
 reference keyType container : OclType oppositeOf mapType ; 82
 83
 } 84
 85
} 86
 87
package Expressions { 88
 class CollectionOperationCallExp extends OperationCallExp { 89
 90
 } 91
 92
 class VariableExp extends OclExpression { 93
 reference referredVariable : VariableDeclaration oppositeOf variableExp ; 94
 attribute name ordered : String; 95
 96
 } 97
 98
 class EmptyMapExp extends OclExpression { 99
 100
 } 101
 102
 class RealExp extends NumericExp { 103
 attribute realSymbol ordered : Double ; 104
 105
 } 106
 107
 abstract class PrimitiveExp extends OclExpression { 108
 109
 } 110
 111
 class IterateExp extends LoopExp { 112
 reference result container : VariableDeclaration oppositeOf baseExp ; 113
 114
 } 115
 116
 abstract class PropertyCallExp extends OclExpression { 117
 reference source container : OclExpression oppositeOf appliedProperty ; 118
 119
 } 120
 121
 class TuplePart extends VariableDeclaration { 122
 reference tuple : TupleExp oppositeOf tuplePart ; 123
 124
 } 125
 126
 abstract class OclExpression extends Element { 127
 reference ifExp3 [0- 1] : IfExp oppositeOf elseExpression ; 128
 reference appliedProperty [0- 1] : PropertyCallExp oppositeOf source ; 129
 reference collection [0- 1] : CollectionExp oppositeOf elements ; 130
 reference letExp [0- 1] : LetExp oppositeOf in_ ; 131
 reference loopExp [0- 1] : LoopExp oppositeOf body ; 132

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 47

 reference parentOperation [0- 1] : OperationCallExp oppositeOf arguments ; 133
 reference initializedVariable [0- 1] : VariableDeclaration oppositeOf 134
initExpression ; 135
 reference ifExp2 [0- 1] : IfExp oppositeOf thenExpression ; 136
 reference "operation" [0- 1] : Operation oppositeOf body ; 137
 reference ifExp1 [0- 1] : IfExp oppositeOf condition ; 138
 reference type container : OclType oppositeOf oclExpression ; 139
 reference "attribute" [0- 1] : Attribute oppositeOf initExpression ; 140
 141
 } 142
 143
 class IntegerExp extends NumericExp { 144
 attribute integerSymbol ordered : Integer; 145
 146
 } 147
 148
 class EnumLiteralExp extends OclExpression { 149
 attribute name ordered : String; 150
 151
 } 152
 153
 class OperatorCallExp extends OperationCallExp { 154
 155
 } 156
 157
 class IteratorExp extends LoopExp { 158
 attribute name ordered : String; 159
 160
 } 161
 162
 class StringExp extends PrimitiveExp { 163
 attribute stringSymbol ordered : String; 164
 165
 } 166
 167
 class BooleanExp extends PrimitiveExp { 168
 attribute booleanSymbol ordered : Boolean; 169
 170
 } 171
 172
 class LetExp extends OclExpression { 173
 reference variable container : VariableDeclaration oppositeOf letExp ; 174
 reference in_ container : OclExpression oppositeOf letExp ; 175
 176
 } 177
 178
 class Iterator extends VariableDeclaration { 179
 reference loopExpr [0- 1] : LoopExp oppositeOf iterators ; 180
 181
 } 182
 183
 class VariableDeclaration extends Element { 184
 reference letExp [0- 1] : LetExp oppositeOf variable ; 185
 reference type container : OclType oppositeOf variableDeclaration ; 186
 reference baseExp [0- 1] : IterateExp oppositeOf result ; 187
 reference variableExp [*] : VariableExp oppositeOf referredVariable ; 188
 reference initExpression [0- 1] container : OclExpression oppositeOf 189
initializedVariable ; 190
 attribute varName ordered : String; 191
 attribute id ordered : String; 192
 193
 } 194
 195
 class OperationCallExp extends PropertyCallExp { 196
 reference arguments [*] ordered container : OclExpression oppositeOf 197
parentOperation ; 198
 attribute operationName : String; 199
 attribute signature [0- 1] : String; 200
 201

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 48

 } 202
 203
 abstract class NumericExp extends PrimitiveExp { 204
 205
 } 206
 207
 class BagExp extends CollectionExp { 208
 209
 } 210
 211
 abstract class CollectionExp extends OclExpression { 212
 reference elements [*] ordered container : OclExpression oppositeOf collection ; 213
 214
 } 215
 216
 class IfExp extends OclExpression { 217
 reference thenExpression container : OclExpression oppositeOf ifExp2 ; 218
 reference condition container : OclExpression oppositeOf ifExp1 ; 219
 reference elseExpression container : OclExpression oppositeOf ifExp3 ; 220
 221
 } 222
 223
 class LoopExp extends PropertyCallExp { 224
 reference body container : OclExpression oppositeOf loopExp ; 225
 reference iterators [1- *] container : Iterator oppositeOf loopExpr ; 226
 227
 } 228
 229
 class TupleExp extends OclExpression { 230
 reference tuplePart [*] ordered container : TuplePart oppositeOf tuple ; 231
 232
 } 233
 234
 class SequenceExp extends CollectionExp { 235
 236
 } 237
 238
 class NavigationOrAttributeCallExp extends PropertyCallExp { 239
 attribute name ordered : String; 240
 241
 } 242
 243
 class SetExp extends CollectionExp { 244
 245
 } 246
 247
 class OrderedSetExp extends CollectionExp { 248
 249
 } 250
 251
} 252
 253
package ATL { 254
 class DerivedInPatternElement extends InPatternElement { 255
 reference value container : OclExpression ; 256
 257
 } 258
 259
 class Query extends Unit { 260
 reference body container : OclExpression ; 261
 reference helpers [*] ordered container : Helper oppositeOf query ; 262
 263
 } 264
 265
 class Module extends Unit { 266
 reference inModels [1- *] ordered container : OclModel ; 267
 reference outModels [1- *] container : OclModel ; 268
 reference elements [*] ordered container : ModuleElement oppositeOf module ; 269
 270

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 49

 } 271
 272
 class ActionBlock extends Element { 273
 reference rule : Rule oppositeOf actionBlock ; 274
 reference statements [*] ordered container : Statement ; 275
 276
 } 277
 278
 abstract class Statement extends Element { 279
 280
 } 281
 282
 class ExpressionStat extends Statement { 283
 reference expression container : OclExpression ; 284
 285
 } 286
 287
 class BindingStat extends Statement { 288
 reference source : OclExpression ; 289
 attribute propertyName : String; 290
 reference value container : OclExpression ; 291
 292
 } 293
 294
 class IfStat extends Statement { 295
 reference condition container : OclExpression ; 296
 reference thenStatements [*] ordered container : Statement ; 297
 reference elseStatements [*] ordered container : Statement ; 298
 299
 } 300
 301
 class ForStat extends Statement { 302
 reference iterator container : Iterator ; 303
 reference collection container : OclExpression ; 304
 reference statements [*] ordered container : Statement ; 305
 306
 } 307
 308
 class Unit extends Element { 309
 reference libraries [*] container : LibraryRef oppositeOf unit ; 310
 attribute name ordered : String; 311
 312
 } 313
 314
 class Library extends Unit { 315
 reference helpers [*] ordered container : Helper oppositeOf library ; 316
 317
 } 318
 319
 abstract class Rule extends ModuleElement { 320
 reference outPattern [0- 1] container : OutPattern oppositeOf rule ; 321
 reference actionBlock [0- 1] container : ActionBlock oppositeOf rule ; 322
 reference variables [*] ordered container : RuleVariableDeclaration oppositeOf 323
rule ; 324
 attribute name ordered : String; 325
 326
 } 327
 328
 abstract class OutPatternElement extends PatternElement { 329
 reference outPattern : OutPattern oppositeOf elements ; 330
 reference sourceElement [0- 1] : InPatternElement oppositeOf mapsTo ; 331
 reference bindings [*] ordered container : Binding oppositeOf outPatternElement ; 332
 333
 } 334
 335
 class InPattern extends Element { 336
 reference elements [1- *] container : InPatternElement oppositeOf inPattern ; 337
 reference rule : MatchedRule oppositeOf inPattern ; 338
 reference filter [0- 1] container : OclExpression ; 339

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 50

 340
 } 341
 342
 class OutPattern extends Element { 343
 reference rule : Rule oppositeOf outPattern ; 344
 reference elements [1- *] ordered container : OutPatternElement oppositeOf 345
outPattern ; 346
 347
 } 348
 349
 abstract class ModuleElement extends Element { 350
 reference module : Module oppositeOf elements ; 351
 352
 } 353
 354
 class Helper extends ModuleElement { 355
 reference query [0- 1] : Query oppositeOf helpers ; 356
 reference library [0- 1] : Library oppositeOf helpers ; 357
 reference definition container : OclFeatureDefinition ; 358
 359
 } 360
 361
 class SimpleInPatternElement extends InPatternElement { 362
 363
 } 364
 365
 abstract class InPatternElement extends PatternElement { 366
 reference mapsTo : OutPatternElement oppositeOf sourceElement ; 367
 reference inPattern : InPattern oppositeOf elements ; 368
 369
 } 370
 371
 abstract class PatternElement extends VariableDeclaration { 372
 373
 } 374
 375
 class CalledRule extends Rule { 376
 reference parameters [*] container : Parameter ; 377
 attribute isEntrypoint : Boolean; 378
 379
 } 380
 381
 class Binding extends Element { 382
 reference value container : OclExpression ; 383
 reference outPatternElement : OutPatternElement oppositeOf bindings ; 384
 attribute propertyName ordered : String; 385
 386
 } 387
 388
 class ForEachOutPatternElement extends OutPatternElement { 389
 reference collection container : OclExpression ; 390
 reference iterator container : Iterator ; 391
 392
 } 393
 394
 class RuleVariableDeclaration extends VariableDeclaration { 395
 reference rule : Rule oppositeOf variables ; 396
 397
 } 398
 399
 class LibraryRef extends Element { 400
 reference unit : Unit oppositeOf libraries ; 401
 attribute name ordered : String; 402
 403
 } 404
 405
 class MatchedRule extends Rule { 406
 reference inPattern [0- 1] container : InPattern oppositeOf rule ; 407
 reference children [*] : MatchedRule oppositeOf superRule ; 408

ATL Transformation Example

DSL to EMF Date 26/10/2005

Page 51

 reference superRule [0- 1] : MatchedRule oppositeOf children ; 409
 attribute isAbstract ordered : Boolean; 410
 411
 } 412
 413
 class SimpleOutPatternElement extends OutPatternElement { 414
 415
 } 416
 417
} 418
 419
package OCL { 420
 abstract class OclFeature extends Element { 421
 reference definition [0- 1] : OclFeatureDefinition oppositeOf feature ; 422
 attribute name ordered : String; 423
 424
 } 425
 426
 class Attribute extends OclFeature { 427
 reference initExpression container : OclExpression oppositeOf "attribute" ; 428
 reference type container : OclType oppositeOf "attribute" ; 429
 430
 } 431
 432
 class Operation extends OclFeature { 433
 reference parameters [*] ordered container : Parameter oppositeOf "operation" ; 434
 reference returnType container : OclType oppositeOf "operation" ; 435
 reference body container : OclExpression oppositeOf "operation" ; 436
 437
 } 438
 439
 class Parameter extends VariableDeclaration { 440
 reference "operation" : Operation oppositeOf parameters ; 441
 442
 } 443
 444
 class OclModel extends Element { 445
 reference metamodel : OclModel oppositeOf model ; 446
 reference elements [*] : OclModelElement oppositeOf model ; 447
 reference model [*] : OclModel oppositeOf metamodel ; 448
 attribute name : String; 449
 450
 } 451
 452
 class OclContextDefinition extends Element { 453
 reference definition : OclFeatureDefinition oppositeOf context_ ; 454
 reference context_ container : OclType oppositeOf definitions ; 455
 456
 } 457
 458
 class OclFeatureDefinition extends Element { 459
 reference feature container : OclFeature oppositeOf definition ; 460
 reference context_ [0- 1] container : OclContextDefinition oppositeOf definition ; 461
 462
 } 463
} 464

